Site items in: Improved Haber-Bosch

Optimizing absorption to improve Haber-Bosch synthesis
Paper

Ammonia absorber columns offer an alternative separation unit to replace condensation in the Haber-Bosch synthesis loop. Metal halide salts can selectively separate ammonia from the reactor outlet gas mixture and incorporate it into their crystal lattice with remarkably high thermodynamic capacity. While the salts’ working capacity can be limited and unstable when they are in their pure form, the capacity is stable and can be high when using a porous silica support. Here, we discuss optimal conditions for uptake and release of ammonia. The production capacity (ammonia processed per unit absorbent and per unit production time) depends on processing parameters…

Dynamic Analysis of Flex-gNH3 – a Green Ammonia Synthesis Process
Paper

The future of a decarbonised ammonia production is seen as the alignment of the intermittent production of renewable energy, energy demands and ammonia process features. The current Haber-Bosch ammonia synthesis process can indeed be altered to enable green and sustainable ammonia production primarily being driven by renewable electricity. However, this will require to enhance current commercial Haber-Bosch (H-B) process flexibility with modifications to redefine the conventional H–B process with a new optimised control. The technical feasibility of green-ammonia (gNH3) process had been widely discussed and analysed focusing on its energy efficiency, the development of small-scale, distributed, modularised processes that can…

Stami Green Ammonia to play a key role in decarbonizing the fertilizer industry
Paper

Stamicarbon green ammonia technology is based on the proven Haber-Bosh process and a perfect match for Power to X small and medium size project. It unique operational conditions and lean process design lead to a compact plant configuration with a minimum foot print requirement and thus a very competitive Capex when compared to other technologies. Moreover, the relatively high operating pressure makes it possible to obtain a high conversion per path using a minimum volume of catalyst. Maire Tecnimont group is applying Stami Green Ammonia technology in two green feasibility study projects, Greenfield Nitrogen located in the heart of the…

Green Ammonia at Oil and Gas Scale
Paper

Green Ammonia demand will grow massively over the coming years as it takes a central role in decarbonization, particularly in hard to abate sectors. In order to meet this demand, the industry must respond with projects at oil and gas scale.  This is the only way to deliver the volumes required to decarbonize and to do it at the prices needed to accelerate the energy transition.  The project concept pioneered by Intercontinental Energy offers a way forward. This presentation will outline Intercontinental Energy’s view of the green ammonia market and summarize the project template used throughout the global portfolio, followed by an…

Paper

Ammonia is considered as an important chemical used in agriculture, household cleaning and manufacturing. Mass production of ammonia mostly uses the Haber-Bosch process, reacting hydrogen and nitrogen. However, this process requires a moderately-elevated temperature (450°C) and high pressure (100 bar). Therefore, the development of technologies to produce ammonia with a moderate operation condition and a higher energy efficiency would have a positive economic impact and simulate new approaches in industrial chemistry. Reactors enable single discharge and multi-discharge operation have been built, and their performance proves the concept of conversion of nitrogen and hydrogen and demonstrates the ability to produce ammonia.…

Paper

Ammonia is an important chemical feedstock, and more than 80% of the synthesized ammonia is used to produce fertilizer. Ammonia is also being considered as an energy carrier and hydrogen source (1) because it has a high energy density (12.8 GJ m-3) and a high hydrogen content (17.6 wt%), (2) because infrastructure for ammonia storage and transportation is already established, and (3) because carbon dioxide is not emitted when ammonia is decomposed to produce hydrogen. If ammonia could be efficiently produced from a renewable energy source, such as solar or wind energy, problems related to the global energy crisis could…

From Micro to Mega, how the green ammonia concept adapts
Paper

Green ammonia concepts from thyssenkrupp are available from 50 to over 5000 tonnes per day. Variability of electrolytic hydrogen feed presents one of the biggest and unique challenge in achieving an optimal and stable functioning of the Haber-Bosch synthesis loop. The solutions to these challenges require a customised approach, dependent on scale and power generation mix of the of the facility. At thyssenkrupp, Australia, we offer local expertise in optimising the concepts for your small and large scale green ammonia applications, underpinned by our know how as a world leading electrolysis and ammonia technology supplier.

Advanced Catalysts Development for Small, Distributed, Clean Haber-Bosch Reactors
Paper

The traditional Haber-Bosch (HB) synthesis of anhydrous ammonia will adapt to clean power by sourcing the hydrogen from renewable electrolysis. However, the very large scale of current HB plant designs are not well-matched to smaller and more distributed clean power resources. Plant/reactor designs need to be made at a smaller scale in order to best utilize clean hydrogen. Small, megawatt scale HB reactors have an additional advantage of being better able ramp up and down with variable renewable power. This talk will detail ARPA-e funded work into the design and optimization of these smaller, clean NH3 reactors, which utilize much…