Site items in: Energy Storage

Functionalized Ordered Mesoporous Silica Composites As Potential Ammonia Storage Materials
Paper

Ammonia may provide an alternative energy supplier for its strong capability as hydrogen carrier. However, it is a problem that how to storage this kind of chemical at relatively high temperature, for example 300°C in fuel cell. In this work, a composite material based on metal halides and ordered mesoporous silica framework is developed and used to target ammonia at relatively high temperature. The silica framework is fabricated via evaporation induced self-assembly method and has tunable mesoporous structure with addition of hexadecyl trimethyl ammonium bromide (CTAB). Several metal salts at various concentrations are added to the mesoporous framework via wetness…

Power-to-Ammonia-to-Power (P2A2P) for Local Electricity Storage in 2025
Paper

A carbon-free, circular economy is required to decrease greenhouse gas emissions. A commonly named alternative to the carbon-based economy is the hydrogen economy. However, storing and transporting hydrogen is difficult. Therefore, the ammonia economy is proposed. Ammonia (NH3) is a carbon-free hydrogen carrier, which can mediate the hydrogen economy. Especially for long-term storage (above 1 day), ammonia is more economically stored than hydrogen. Transportation costs are greatly reduced by adopting a decentralized energy economy. Furthermore, political-economic factors influence energy prices less in a decentralized energy economy. With small-scale ammonia production gaining momentum, business models for the decentralized ammonia economy are…

Future of Ammonia Production: Improvement of Haber-Bosch Process or Electrochemical Synthesis?
Paper

Ammonia, the second most produced chemical in the world (176 million tons in 2014), is manufactured at large plants (1,000 – 1,500 t/day) using Haber-Bosch process developed more than hundred years ago. A simple reaction of nitrogen and hydrogen (produced by steam methane reforming or coal gasification) consumes about 2% of world energy, in part due to the use of high pressure and temperature. With the global transition from fossil fuels to intermittent renewable energy sources there is a need for long term storage and long range transmission of energy, for which ammonia is perfect fit. To make it practical,…

Effect of Water on the Auto-Ignition of a Non-Carbon Nitrogen-Based Monofuel
Paper

The fluctuating nature of renewable energy sources is becoming a limiting factor in their widespread utilization. Energy storage solutions must be developed to overcome this issue. Chemical fuels are considered to be a promising solution to this problem. We are studying the implementation of nitrogen-based fuels for this purpose. An aqueous solution of ammonium nitrate and ammonium hydroxide (AAN) is suggested as a carbon-free nitrogen-based synthetic monofuel. This solution may serve as a renewable nitrogen-based synthetic hydrogen carrier since it is safe to store, transport and utilize. Since ammonium hydroxide (AH) and ammonium nitrate (AN) act as reducer and net…

The Role of
Paper

Ammonia has the potential to contribute significantly to the decarbonisation of energy systems, by offering a practical, carbon-free hydrogen storage and transportation vector as well as a green fuel in its own right. To better understand the prospects and challenges surrounding the use of ammonia in energy systems, Siemens is leading a collaborative project to build and test an ammonia-based energy storage system at the Rutherford Appleton Laboratory in the UK. Together with its project partners (the UK Science and Technology Facilities Council, the University of Oxford and the University of Cardiff), and supported by Innovate UK, Siemens will demonstrate…