skip to main content
  • Log In
  • Get Started Now
MENU
  • Membership
  • Articles
  • Conferences & Events
  • Papers
  • About
  • Careers
Ammonia-Energy-Association-Logo-Horizontal-Color
Search
Ammonia-Energy-Association-Logo-Horizontal-Color
  • Membership
  • Articles
  • Conferences & Events
  • Papers
  • About
  • Careers
Search

Pure Ammonia Combustion Micro Gas Turbine System

Presented on November 12, 2019 during the Ammonia Energy Conference 2019

Authors Ekenechukwu Chijioke OkaforFukushima Renewable Energy Institute
Download this Presentation Download a PDF version of this presentation.
Abstract

To protect against global warming, a massive influx of renewable energy is expected. Although hydrogen is a renewable media, its storage and transportation in large quantity has some problems. Ammonia fuel, however, is a hydrogen energy carrier and carbon-free fuel, and its storage and transportation technology is already established. In the 1960s, development of ammonia combustion gas turbines was abandoned because combustion efficiency was unacceptably low [1]. Recent demand for hydrogen energy carriers has revived the interest in ammonia as fuel [2, 3]. In 2015, ammonia-combustion gas turbine power generation was reported in Japan using a 50-kW class micro gas turbine [4, 5]. It consists of an ammonia supply system, a gas turbine, selective catalytic reduction (SCR), and loading equipment. Since ammonia combustion emits high concentrations of NOx, low-NOx combustion technology has been investigated. A rich-lean, two-stage combustion technique for ammonia gas turbine combustor was researched and developed [6], which operates in the high-temperature region of the gas turbine combustor. To improve the high-temperature resistance of materials, materials were researched under ammonia combustion conditions. Finally, to obtain a larger system, a 300-kW class ammonia gas turbine power generation system has been designed, using newly developed, high-temperature, and high-efficiency SCR.

Acknowledgements:

This work was supported by Council for Science, Technology and Innovation (CSTI), Cross-ministerial Strategic Innovation Promotion Program (SIP), “Energy Carriers” (Funding agency : Japan Science and Technology Agency (JST)). Final reports of Energy Carriers program are now available [7].

References:

[1] Pratt, D.T., “Performance of Ammonia-fired Gas-turbine Combustors”, Technical Report No.9, DA-04-200-AMC-791(x), Berkley University of California (1967).
[2] Kobayashi, H., Hayakawa, A., Somarathne, K.D.K.A. and Okafor, E.C., “Science and technology of ammonia combustion”, Proceedings of the Combustion Institute, 37 (2019) 109-133.
[3] Valera-Medina, A., Xiao, H., Owen-Jones, M., David, W. I. F. and Bowen, P. J., “Ammonia for power”, Progress in Energy and Combustion Science, 69 (2018) 63-102.
[4] Iki, N., Kurata, O., Matsunuma, T., Inoue, T., Suzuki, M., Tsujimura, T., Furutani, H., Kobayashi, H., Hayakawa, A., Arakawa, Y. and Ichikawa, A., “Micro Gas Turbine Firing Ammonia”, The 12th Annual NH3 Fuel Conference, Chicago, September 20-23, (2015).
[5] Kurata, O., Iki, N., Inoue, T., Matsunuma, T., Tsujimura, T., Furutani, H., Hayakawa, A. and Kobayashi, H., “Performances and emission characteristics of NH3-air and NH3-CH4-air combustion gas-turbine power generations”, Proceedings of the Combustion Institute, 36 (2017) 3351-3359.
[6] Kurata, O., Iki, N., Inoue, T., Matsunuma, T., Tsujimura, T., Furutani, H., Kawano, M., Arai, K., Okafor, E.C., Hayakawa, A. and Kobayashi, H., “Development of Wide Range-operable, Rich-lean Low-NOx Combustor for NH3 Fuel Gas-turbine Power Generations”, Proceedings of the Combustion Institute, 37 (2019) 4587-4595.
[7] JST, Final reports of Energy Carriers program (in Japanese)

Topics NOx Emissions Ammonia Gas Turbine Emissions Testing
[email protected] [email protected] [email protected] [email protected] [email protected] [email protected] [email protected] [email protected] [email protected] [email protected] [email protected] [email protected] [email protected]
Next up: Ignition Delay Times of Diluted Mixtures of Ammonia/Methane at Elevated Pressures »

Sign up for our Email Newsletter

Mailchimp

Member Organizations

A full list of members can be found in the Member Directory.

BP Logo
CF Industries Logo
CWP Global Logo
Denbury Inc. Logo
Hydrogen Utility (H2U) Logo
InterContinental Energy Logo
KBR Logo
LSB Industries Logo
Mitsui & Co. Logo
Monolith Materials Logo
Nutrien Logo
OCI N.V. Logo
Yara Logo
Acron Logo
AFC Energy Logo
Airgas Logo
Aker Clean Hydrogen Logo
Asian Renewable Energy Hub Logo
Casale Logo
Enaex Logo
ENGIE Logo
Equinor Logo
Fortescue Future Industries Logo
FuelPositive Logo
Haldor Topsøe Logo
Hamilton Locke Logo
Hydrofuel Logo
Marnco Logo
Mitsubishi Heavy Industries Logo
Origin Energy Logo
Proton Ventures Logo
Starfire Energy Logo
Syzygy Plasmonics Logo
thyssenkrupp Logo
Trammo Logo
Tri-State Generation and Transmission Logo
A.P. Møller - Maersk A/S Logo
AES Gener Logo
Air Products Logo
Ammonigy GmbH Logo
AmmPower Logo
Amogy Logo
Argus Media Logo
BASF Logo
Black and Veatch Logo
Bureau Veritas Logo
Burns & McDonnell Engineering Logo
Casa dos Ventos Logo
Consorcio Eólico Logo
CRU Group Logo
CS Combustion Solutions Logo
Cummins Logo
Enterprize Energy Logo
European Institute for Energy Research (EIFER) Logo
Fertiberia Logo
GenCell Energy Logo
GTI Logo
Gunvor Group Logo
H2SITE Logo
Horisont Energi Logo
HyFuels Holdings Logo
IHI Americas Logo
inodú Logo
Intecsa Industrial Logo
Johnson Matthey Logo
Koch Fertilizer Logo
Linde Logo
Lotte Fine Chemical Logo
Mercuria Logo
MineARC Systems Logo
Mitsui O.S.K. Lines Logo
Nel Hydrogen Logo
Oil and Gas Solutions Logo
Organics Group Logo
Pacific Green Technologies Inc. Logo
SagaPure Logo
Schoeller-Bleckmann Nitec Logo
Shell Logo
Sperre Industri Logo
Stamicarbon Logo
Thorium Energy Alliance Logo
TotalEnergies Logo
Tsubame BHB Logo
Wonik Materials Logo
Woodside Energy Logo
Ammonia Energy Association
77 Sands Street, 6th Floor
Brooklyn, NY 11201

Quick Links

  • Membership
  • Articles
  • Conferences & Events
  • Papers
  • About
  • Careers

Copyright © 2022 Ammonia Energy Association. All Rights Reserved.

Site designed and developed by Social Ink