skip to main content
  • Log In
  • Get Started Now
MENU
  • Membership
  • Articles
  • Conferences & Events
  • Papers
  • About
  • Careers
Ammonia-Energy-Association-Logo-Horizontal-Color
Search
Ammonia-Energy-Association-Logo-Horizontal-Color
  • Membership
  • Articles
  • Conferences & Events
  • Papers
  • About
  • Careers
Search

LiH Mediated Ammonia Synthesis Under Mild Condition

Presented on November 2, 2017 during the NH3 Fuel Conference 2017

Authors Jianping GuoPing ChenDalian Institute of Chemical Physics
Download this Presentation Download a PDF version of this presentation.
Abstract

Having a hydrogen content of 17.6 wt% NH3 is an attractive hydrogen carrier. The key issue for NH3 synthesis and decomposition is the development of non-noble metal based, highly active and stable catalysts that can be operated under mild condition. With the understanding on the interaction of LiH and Li2NH with 3d metals or their nitrides, novel catalyst systems, i. e., LiH-3d transition metals for NH3 synthesis and Li2NH-3d transition metal for NH3 decomposition, that have activities surpassing the highly active Ru-based catalysts were developed. The unique chemistry among TM, Li, N and H creates a two-reactive center mediated pathway favouring NH3 synthesis / decomposition over both early and late 3d transition metals under mild condition, i.e., detectable NH3 formation rates can be obtained at 150 °C over the Mn-, Fe- and Co-LiH composite catalysts, respectively. The characterization of intermediate phases and surface clusters of the catalysts allow the elucidation of the step-wise reaction pathway and the interpretation of catalytic mechanism.

Topics Catalysts NH3 Production Rate Measurement
[email protected] [email protected]
Next up: Load Range Enhancement of Haber-Bosch Process Designs for NH3 Sustainable Energy Storage By Multi-Parametric Optimization »

Sign up for our Email Newsletter

Mailchimp

Member Organizations

A full list of members can be found in the Member Directory.

BP Logo
CF Industries Logo
CWP Global Logo
Denbury Inc. Logo
Hydrogen Utility (H2U) Logo
InterContinental Energy Logo
KBR Logo
LSB Industries Logo
Mitsui & Co. Logo
Monolith Materials Logo
Nutrien Logo
OCI N.V. Logo
Yara Logo
Acron Logo
AFC Energy Logo
Airgas Logo
Aker Clean Hydrogen Logo
Asian Renewable Energy Hub Logo
Casale Logo
Enaex Logo
ENGIE Logo
Equinor Logo
Fortescue Future Industries Logo
FuelPositive Logo
Haldor Topsøe Logo
Hamilton Locke Logo
Hydrofuel Logo
Marnco Logo
Mitsubishi Heavy Industries Logo
Origin Energy Logo
Proton Ventures Logo
Starfire Energy Logo
Syzygy Plasmonics Logo
thyssenkrupp Logo
Trammo Logo
Tri-State Generation and Transmission Logo
A.P. Møller - Maersk A/S Logo
AES Gener Logo
Air Products Logo
Ammonigy GmbH Logo
AmmPower Logo
Amogy Logo
Argus Media Logo
BASF Logo
Black and Veatch Logo
Bureau Veritas Logo
Burns & McDonnell Engineering Logo
Casa dos Ventos Logo
Consorcio Eólico Logo
CRU Group Logo
CS Combustion Solutions Logo
Cummins Logo
Enterprize Energy Logo
European Institute for Energy Research (EIFER) Logo
Fertiberia Logo
GenCell Energy Logo
GTI Logo
Gunvor Group Logo
H2SITE Logo
Horisont Energi Logo
HyFuels Holdings Logo
IHI Americas Logo
inodú Logo
Intecsa Industrial Logo
Johnson Matthey Logo
Koch Fertilizer Logo
Linde Logo
Lotte Fine Chemical Logo
Mercuria Logo
MineARC Systems Logo
Mitsui O.S.K. Lines Logo
Nel Hydrogen Logo
Oil and Gas Solutions Logo
Organics Group Logo
Pacific Green Technologies Inc. Logo
SagaPure Logo
Schoeller-Bleckmann Nitec Logo
Shell Logo
Sperre Industri Logo
Stamicarbon Logo
Thorium Energy Alliance Logo
TotalEnergies Logo
Tsubame BHB Logo
Wonik Materials Logo
Woodside Energy Logo
Ammonia Energy Association
77 Sands Street, 6th Floor
Brooklyn, NY 11201

Quick Links

  • Membership
  • Articles
  • Conferences & Events
  • Papers
  • About
  • Careers

Copyright © 2023 Ammonia Energy Association. All Rights Reserved.

Site designed and developed by Social Ink