skip to main content
  • Log In
  • Get Started Now
MENU
  • Membership
  • Articles
  • Conferences & Events
  • Papers
  • About
  • Careers
Ammonia-Energy-Association-Logo-Horizontal-Color
Search
Ammonia-Energy-Association-Logo-Horizontal-Color
  • Membership
  • Articles
  • Conferences & Events
  • Papers
  • About
  • Careers
Search

Developments in Electrochemical Ammonia Synthesis

Presented on September 20, 2016 during the NH3 Fuel Conference 2016

Authors Stephen SzymanskiWayne GellettProton OnSite
Download this Presentation Download a PDF version of this presentation.
Abstract

Proton Energy Systems, d/b/a Proton OnSite, is a technology and commercialization leader in the field of membrane based electrolysis. The company was founded on the vision of utilizing electrolysis technology for the capture and storage of energy in high value applications. Recently, the concept of storing electrical energy in the form of a carbon neutral liquid fuel, particularly ammonia, has been gaining traction within the research investment community.

Proton has been participating in collaborative research with the University of Minnesota to advance the system concept for distributed ammonia production using wind-derived hydrogen (via electrolysis) and subsequent conversion to ammonia using traditional thermochemical processes (e.g. Haber-Bosch). While this is one viable production pathway for renewable ammonia, the cost challenges associated with scaling an electrolysis/Haber-Bosch plant to relevant distributed wind scale (10’s to 100’s of MW) proves to be challenging using today’s commercial technology. However, we believe that advances in both the electrolysis process and the Haber-Bosch synthesis process will help address the techno-economic challenges for this approach.

An alternative to this renewable ammonia concept is direct electrochemical conversion of water and nitrogen to ammonia. Proton OnSite is investigating two different pathways for low temperature, membrane based electrochemical ammonia synthesis. The first approach is using an anion exchange membrane (AEM) to conduct hydroxide ions between the cathode and anode. While the ammonia production rate is lower than in other electrochemical approaches, the AEM technology stands out as having the most potential for efficient ammonia production at low temperatures. Approaches to increase the current density in our USDA-funded project include membrane development toward more stable materials, as well as catalyst development toward selective and stable materials at higher voltages. In addition, the use of better oxygen evolution reaction (OER) catalysts is a significant opportunity to reduce overpotential.

A second approach to direct electrochemical synthesis will be investigated in a new DOE-funded SBIR project entitled “Nitrogenase Inspired Peptide-Functionalized Catalysts for Efficient, Emission-Free Ammonia Production.” In this project, we propose to develop a catalyst manufacturing approach which will utilize peptides to 1) control nanoparticle (NP) synthesis, and 2) functionalize the NP catalyst surface to facilitate NH3 production. The key technology advancement will be to demonstrate production of ammonia from nitrogen and water in an electrochemical system utilizing the proposed peptide-functionalized nanocatalyst approach. The main goal will be show that the developed material has higher performance than other catalysts found in literature at low temperatures, which typically have not had greater than 1% Faradaic efficiency.

In this presentation, we will provide an overview of our research activity and findings on both projects, and thoughts for future work in this innovation space.

Topics Electrochemical Ammonia Small-scale Ammonia Electrochemical Synthesis
[email protected] [email protected]
Next up: Ammonia for Green Energy Storage and Beyond »

Sign up for our Email Newsletter

Mailchimp

Member Organizations

A full list of members can be found in the Member Directory.

BP Logo
CF Industries Logo
CWP Global Logo
Denbury Inc. Logo
Hydrogen Utility (H2U) Logo
InterContinental Energy Logo
KBR Logo
LSB Industries Logo
Mitsui & Co. Logo
Monolith Materials Logo
Nutrien Logo
OCI N.V. Logo
Yara Logo
Acron Logo
AFC Energy Logo
Airgas Logo
Aker Clean Hydrogen Logo
Asian Renewable Energy Hub Logo
Casale Logo
Enaex Logo
ENGIE Logo
Equinor Logo
Fortescue Future Industries Logo
FuelPositive Logo
Haldor Topsøe Logo
Hamilton Locke Logo
Hydrofuel Logo
Marnco Logo
Mitsubishi Heavy Industries Logo
Origin Energy Logo
Proton Ventures Logo
Starfire Energy Logo
Syzygy Plasmonics Logo
thyssenkrupp Logo
Trammo Logo
Tri-State Generation and Transmission Logo
A.P. Møller - Maersk A/S Logo
AES Gener Logo
Air Products Logo
Ammonigy GmbH Logo
AmmPower Logo
Amogy Logo
Argus Media Logo
BASF Logo
Black and Veatch Logo
Bureau Veritas Logo
Burns & McDonnell Engineering Logo
Casa dos Ventos Logo
Consorcio Eólico Logo
CRU Group Logo
CS Combustion Solutions Logo
Cummins Logo
Enterprize Energy Logo
European Institute for Energy Research (EIFER) Logo
Fertiberia Logo
GenCell Energy Logo
GTI Logo
Gunvor Group Logo
H2SITE Logo
Horisont Energi Logo
HyFuels Holdings Logo
IHI Americas Logo
inodú Logo
Intecsa Industrial Logo
Johnson Matthey Logo
Koch Fertilizer Logo
Linde Logo
Lotte Fine Chemical Logo
Mercuria Logo
MineARC Systems Logo
Mitsui O.S.K. Lines Logo
Nel Hydrogen Logo
Oil and Gas Solutions Logo
Organics Group Logo
Pacific Green Technologies Inc. Logo
SagaPure Logo
Schoeller-Bleckmann Nitec Logo
Shell Logo
Sperre Industri Logo
Stamicarbon Logo
Thorium Energy Alliance Logo
TotalEnergies Logo
Tsubame BHB Logo
Wonik Materials Logo
Woodside Energy Logo
Ammonia Energy Association
77 Sands Street, 6th Floor
Brooklyn, NY 11201

Quick Links

  • Membership
  • Articles
  • Conferences & Events
  • Papers
  • About
  • Careers

Copyright © 2023 Ammonia Energy Association. All Rights Reserved.

Site designed and developed by Social Ink