skip to main content
  • Log In
  • Get Started Now
MENU
  • Membership
  • Articles
  • Conferences & Events
  • Papers
  • About
  • Careers
Ammonia-Energy-Association-Logo-Horizontal-Color
Search
Ammonia-Energy-Association-Logo-Horizontal-Color
  • Membership
  • Articles
  • Conferences & Events
  • Papers
  • About
  • Careers
Search

Biomass Based Sustainable Ammonia Production

Presented on November 13, 2019 during the Ammonia Energy Conference 2019

Authors Antonio SánchezMariano MartínPastora VegaUniversity of Salamanca
Download this Presentation Download a PDF version of this presentation.
Abstract

The renewable ammonia production is gaining attention nowadays. Current production processes use as raw material, predominantly, natural gas or coal. Therefore, large amounts of greenhouse carbon dioxide are released in the production process. Different alternatives for a sustainable path to produce ammonia have been analysed. One alternative is producing hydrogen through electrolysis, nitrogen by air separation and then produce ammonia via Haber Bosch process (Sánchez & Martín, 2018). An interesting feature of this process is the possibility of integrating renewable energy sources in the ammonia production. Another technology is the electrochemical ammonia production (Bicer & Dincer, 2017). The ammonia synthesis takes place in an electrolytic cell using as raw material nitrogen and hydrogen (or directly water). This method allows a better integration of the fluctuating renewables energies in the process but it is still under development. Finally, biomass can be used as feedstock to produce ammonia. Two main processes have been proposed to transform biomass into ammonia: biomass digestion and biomass gasification. Some authors present biomass gasification as a competitive alternative in economic and environmental terms (Demirhan et al., 2018; Tock et al., 2015).

In this work, a systematic methodology to optimize the biomass to ammonia process and to evaluate its economics and environmental performance is presented. Switchgrass is selected as raw material due to its large potential as a bioenergy crop. The biomass is treated following two paths: gasification and anaerobic digestion. Three gasification alternatives have been considered: indirect gasification, direct gasification with oxygen and steam and direct gasification with air and steam. Two different reforming alternatives have been studied: autothermal reforming and steam methane reforming. Finally, two different ammonia configurations have been presented: direct cooling and indirect cooling multibed reactors. Different approaches to the modelling issue have been employed: first principles, equilibrium conditions, surrogate models, industrial data, etc. The objective function consists of a simplified evaluation of the profit. The entire problem is decomposed and formulated in GAMS as a set of NLP’s for each major alternative where the decision variables are the operating conditions of the gasifiers, the synthesis reactors, etc.

The results show that the most promising alternative to produce ammonia from biomass consists of the combination of indirect gasification with steam methane reforming and direct cooling ammonia reactor. This technology presents an investment of about 316 MM€ and a production cost of 380€ per ton of ammonia. The gasifier processes present better economic results than the digestion ones due to the larger yield to product from the biomass while the digestion generates a large amount of unconverted digestate that it is not transformed into ammonia. The environmental index shows a release of the carbon dioxide associated with the process to be about 1 kg CO2 per kg of ammonia, approximately one fourth of the current values. Finally, a sensitivity analysis based on the switchgrass price and a scaling study for the plant is also presented.

References:

Sánchez, A.; Martín, M. Scale up and scale down issues of renewable ammonia plants: Towards modular design. Sustainable Production and Consumption 2018, 16, 176-192. DOI: 10.1016/j.spc.2018.08.001.

Bicer, Y.; Dincer, I. Assessment of a Sustainable Electrochemical Ammonia Production System Using Photoelectrochemically Produced Hydrogen under Concentrated Sunlight. ACS Sustainable Chemistry and Engineering 2017, 5(9), 8035-8043. DOI: 10.1021/acssuschemeng.7b01638.

Demirhan, C.D., Tso, W.W., Powell, J.B., Pistikopoulos, E.N. Sustainable ammonia production through process synthesis and global optimization. AIChE Journal 2018. DOI: 10.1002/aic.16498.

Tock, L.; Maréchal, F.; Perrenoud, M. Thermo-environomic Evaluation of the Ammonia Production. The Canadian Journal of Chemical Engineering 2015, 93,356-362. DOI: 10.1002/cjce.22126.

Topics Biomass Ammonia Feedstock: Biomass Ammonia Economics
[email protected] [email protected] [email protected]
Next up: Simulation of an Ammonia Plant Integrated with the Allam Cycle for Commercial Production of Ammonia and Power »

Sign up for our Email Newsletter

Mailchimp

Member Organizations

A full list of members can be found in the Member Directory.

BP Logo
CF Industries Logo
CWP Global Logo
Denbury Inc. Logo
Hydrogen Utility (H2U) Logo
InterContinental Energy Logo
KBR Logo
LSB Industries Logo
Mitsui & Co. Logo
Monolith Materials Logo
Nutrien Logo
OCI N.V. Logo
Yara Logo
Acron Logo
AFC Energy Logo
Airgas Logo
Aker Clean Hydrogen Logo
Asian Renewable Energy Hub Logo
Casale Logo
Enaex Logo
ENGIE Logo
Equinor Logo
Fortescue Future Industries Logo
FuelPositive Logo
Haldor Topsøe Logo
Hamilton Locke Logo
Hydrofuel Logo
Marnco Logo
Mitsubishi Heavy Industries Logo
Origin Energy Logo
Proton Ventures Logo
Starfire Energy Logo
Syzygy Plasmonics Logo
thyssenkrupp Logo
Trammo Logo
Tri-State Generation and Transmission Logo
A.P. Møller - Maersk A/S Logo
AES Gener Logo
Air Products Logo
Ammonigy GmbH Logo
AmmPower Logo
Amogy Logo
Argus Media Logo
BASF Logo
Black and Veatch Logo
Bureau Veritas Logo
Burns & McDonnell Engineering Logo
Casa dos Ventos Logo
Consorcio Eólico Logo
CRU Group Logo
CS Combustion Solutions Logo
Cummins Logo
Enterprize Energy Logo
European Institute for Energy Research (EIFER) Logo
Fertiberia Logo
GenCell Energy Logo
GTI Logo
Gunvor Group Logo
H2SITE Logo
Horisont Energi Logo
HyFuels Holdings Logo
IHI Americas Logo
inodú Logo
Intecsa Industrial Logo
Johnson Matthey Logo
Koch Fertilizer Logo
Linde Logo
Lotte Fine Chemical Logo
Mercuria Logo
MineARC Systems Logo
Mitsui O.S.K. Lines Logo
Nel Hydrogen Logo
Oil and Gas Solutions Logo
Organics Group Logo
Pacific Green Technologies Inc. Logo
SagaPure Logo
Schoeller-Bleckmann Nitec Logo
Shell Logo
Sperre Industri Logo
Stamicarbon Logo
Thorium Energy Alliance Logo
TotalEnergies Logo
Tsubame BHB Logo
Wonik Materials Logo
Woodside Energy Logo
Ammonia Energy Association
77 Sands Street, 6th Floor
Brooklyn, NY 11201

Quick Links

  • Membership
  • Articles
  • Conferences & Events
  • Papers
  • About
  • Careers

Copyright © 2023 Ammonia Energy Association. All Rights Reserved.

Site designed and developed by Social Ink