skip to main content
  • Log In
  • Get Started Now
MENU
  • Membership
  • Articles
  • Conferences & Events
  • Papers
  • About
  • Careers
Ammonia-Energy-Association-Logo-Horizontal-Color
Search
Ammonia-Energy-Association-Logo-Horizontal-Color
  • Membership
  • Articles
  • Conferences & Events
  • Papers
  • About
  • Careers
Search

Ammonia As a Hydrogen Carrier for PEM Fuel Cells

Presented on October 31, 2018 during the NH3 Fuel Conference 2018

Authors Yoshitsugu KojimaHiroshima University
Download this Presentation Download a PDF version of this presentation.
Abstract

Ammonia (NH3) is easily liquefied by compression at 1 MPa and 25°C, and has highest volumetric hydrogen density of 10.7 kg H2 /100L. It has high gravimetric hydrogen density of 17.8 wt%. The heat of formation of NH3 is about 1/10 of combustion heat of hydrogen. NH3 has advantages as a hydrogen carrier for fuel cell vehicles (FCVs).

ISO 14687-2:2012 specifies the quality characteristics of hydrogen fuel. The maximum concentration of NH3 and N2 for the FCVs is 0.1ppm and 100 ppm, respectively. The minimum H2 purity is 99.97%. We need component technologies to produce high-purity hydrogen from ammonia, together with those to improve hydrogen energy efficiency.

High-performance ruthenium supported on MgO cracking catalyst was prepared. For this catalyst, NH3 conversion was 99.8% at 0.1 MPa and 500°C which was almost the same as the chemical equilibrium value. We found that the remained NH3 concentration of 1000 ppm was reduced to below 0.02 ppm using the remover including zeolite packed column. The NH3 elimination quantity was 30-40 gNH3/L. The Zeolite adsorbed NH3 was recycled by annealing below 400°C. Hydrogen purification process with pressure swing adsorption (PSA) method was established to produce high purity hydrogen above 99.98% and to reduce nitrogen below 10 ppm. Micro-channel cracker with heat supply unit and H2 purifier with off-gas supply unit were produced experimentally to improve efficiency.

In conclusion, we have developed component technologies to produce 1Nm3/h-scale high-purity hydrogen from ammonia (NH3 <0.02ppm, N2 <10ppm, H2 >99.98%) and to improve hydrogen energy efficiency by combination of the NH3 cracker, the remover and the H2 purifier. Hydrogen purification efficiency (hydrogen recovery rate) using the H2 purifier was 90%. Hydrogen energy efficiency using the micro-channel cracker was 80 %.

I am greatly indebted to Professor T. Ichikawa and Associate Professor H. Miyaoka of Hiroshima University, Dr. T. Fujitani of AIST, Mr. T. Kuriyama of Showa Denko K.K., Mr. T. Adachi of Taiyo Nippon Sanso Corporation and Mr. H. Kubo of Toyota Industries Corporation for collaboration of this work. This work was supported by Council for Science, Technology and Innovation (CSTI), Cross-ministerial Strategic Innovation Promotion Program (SIP), “energy carrier” (funding agency : JST).

Topics Hydrogen Carrier Hydrogen Purification PEM Fuel Cell Cracking Ammonia
[email protected]
Next up: Catalytic Membrane Reactors for Efficient Delivery of High Purity Hydrogen from Ammonia Decomposition »

Sign up for our Email Newsletter

Mailchimp

Member Organizations

A full list of members can be found in the Member Directory.

BP Logo
CF Industries Logo
CWP Global Logo
Denbury Inc. Logo
Hydrogen Utility (H2U) Logo
InterContinental Energy Logo
KBR Logo
LSB Industries Logo
Mitsui & Co. Logo
Monolith Materials Logo
Nutrien Logo
OCI N.V. Logo
Yara Logo
Acron Logo
AFC Energy Logo
Airgas Logo
Aker Clean Hydrogen Logo
Asian Renewable Energy Hub Logo
Casale Logo
Enaex Logo
ENGIE Logo
Equinor Logo
Fortescue Future Industries Logo
FuelPositive Logo
Haldor Topsøe Logo
Hamilton Locke Logo
Hydrofuel Logo
Marnco Logo
Mitsubishi Heavy Industries Logo
Origin Energy Logo
Proton Ventures Logo
Starfire Energy Logo
Syzygy Plasmonics Logo
thyssenkrupp Logo
Trammo Logo
Tri-State Generation and Transmission Logo
A.P. Møller - Maersk A/S Logo
AES Gener Logo
Air Products Logo
Ammonigy GmbH Logo
AmmPower Logo
Amogy Logo
Argus Media Logo
BASF Logo
Black and Veatch Logo
Bureau Veritas Logo
Burns & McDonnell Engineering Logo
Casa dos Ventos Logo
Consorcio Eólico Logo
CRU Group Logo
CS Combustion Solutions Logo
Cummins Logo
Enterprize Energy Logo
European Institute for Energy Research (EIFER) Logo
Fertiberia Logo
GenCell Energy Logo
GTI Logo
Gunvor Group Logo
H2SITE Logo
Horisont Energi Logo
HyFuels Holdings Logo
IHI Americas Logo
inodú Logo
Intecsa Industrial Logo
Johnson Matthey Logo
Koch Fertilizer Logo
Linde Logo
Lotte Fine Chemical Logo
Mercuria Logo
MineARC Systems Logo
Mitsui O.S.K. Lines Logo
Nel Hydrogen Logo
Oil and Gas Solutions Logo
Organics Group Logo
Pacific Green Technologies Inc. Logo
SagaPure Logo
Schoeller-Bleckmann Nitec Logo
Shell Logo
Sperre Industri Logo
Stamicarbon Logo
Thorium Energy Alliance Logo
TotalEnergies Logo
Tsubame BHB Logo
Wonik Materials Logo
Woodside Energy Logo
Ammonia Energy Association
77 Sands Street, 6th Floor
Brooklyn, NY 11201

Quick Links

  • Membership
  • Articles
  • Conferences & Events
  • Papers
  • About
  • Careers

Copyright © 2022 Ammonia Energy Association. All Rights Reserved.

Site designed and developed by Social Ink