Ammonia absorber columns offer an alternative separation unit to replace condensation in the Haber-Bosch synthesis loop. Metal halide salts can selectively separate ammonia from the reactor outlet gas mixture and incorporate it into their crystal lattice with remarkably high thermodynamic capacity. While the salts’ working capacity can be limited and unstable when they are in their pure form, the capacity is stable and can be high when using a porous silica support. Here, we discuss optimal conditions for uptake and release of ammonia. The production capacity (ammonia processed per unit absorbent and per unit production time) depends on processing parameters…
Content Related to RTI International
Next Generation Technology Integration Platform for Low- and Zero-Carbon Ammonia Production and Utilization
RTI International and its partners are developing a Technology Integration Platform (TIP) to demonstrate next-generation technologies for ammonia (NH3) production and utilization in a modular testbed as part of U.S. Department of Energy ARPA-E’s REFUEL+IT program. The objective of this effort will be to demonstrate the use of NH3 for long duration energy storage, as a fuel, and a hydrogen (H2) carrier. The TIP, which will be housed at the University of Minnesota West Central Research and Outreach Center’s operational hybrid wind and solar test site, will integrate several breakthrough technologies developed in the REFUEL program to demonstrate an advanced…
The Ammonia Wrap: ICE announces its new green ammonia "SuperGiant", Cummins and KBR team up on integrated solutions, a new green ammonia pilot in Minnesota and decarbonisation of existing plants in Russia
Welcome to the Ammonia Wrap: a summary of all the latest announcements, news items and publications about ammonia energy. There's so much news this edition that we're bringing you two, special Wrap articles. Our first focuses on ammonia production -
ARPA-E funding for renewable ammonia synthesis technologies
Last week, ARPA-E announced funding for eight technologies that aim to make ammonia from renewable electricity, air, and water. The technological pathways being developed include adaptations of the Haber-Bosch process - seeking improvements in catalysts and absorbents - as well